

PJSC "ZAPOROZHOGNEUPOR" ("ZAPORIZHZHIA REFRACTORIES") is Ukraine's largest producer of high-quality refractory products and materials.

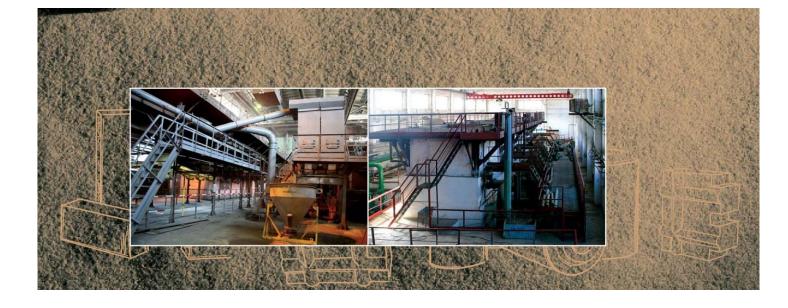
The company produces chamotte, mullite silica, mullite, mullite-corundum, quartzite non-fired, periclase, periclase-chromite, chromite-periclase, periclase-carbon, alumina-periclase-carbon, corundum-carbon, concrete vibrocast shaped products, unshaped refractories and various types of chamottes, including fractionated, high-tech castables and mixes for steel, glass, cement, machine-building, chemical, sugar, and other industries.

The products are supplied throughout Ukraine and to various European countries.

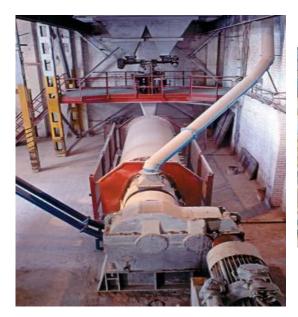
The company has developed and operates a Quality Management System and is compliant with the requirements of the international standard ISO 9001:2015 in the TUV AUSTRIA certification system. ZAPORIZHZHIA REFRACTORIES applies the quality management system in the development, design, production, sales and after-sales service of refractories for steel and other industries.

By continuously implementing timely upgrades and improving its technical and economic resources, ZAPORIZHZHIA REFRACTORIES strives to dramatically improve product quality and maintain lasting competitiveness in the refractory market. ZAPORIZHZHIA REFRACTORIES prioritises technical re-equipment and revamping of its production, development of new products, including high-tech ones, continuous work to enhance product quality, engineering support, warranty service, and technical assistance for our customers.

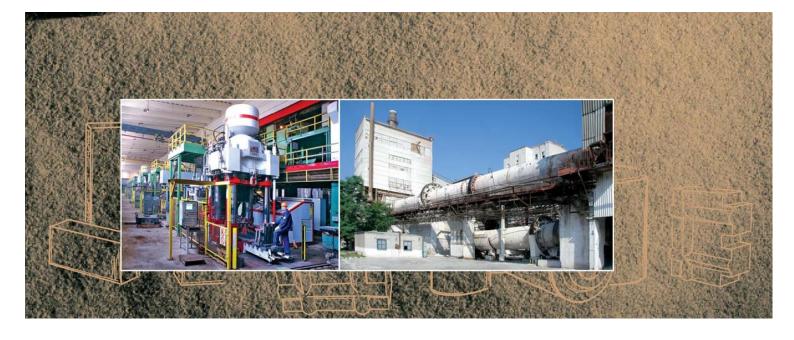
International and national awards recognising the company's competitive and highquality products serve as a testament to its strong reputation in the business world. We look forward to establishing long-term, mutually beneficial cooperation with you!



The construction of the Zaporizhzhia Refractory Plant commenced in August 1929. The plant was intended to supply refractories to steel, machine-building, and chemical industries in the Dnieper region and southern Ukraine. The first products were made in 1933.


To meet the needs of the developing industry, the company expanded its range of chamotte products.

In parallel, production facilities for magnesia, high-alumina, and silicon carbide products were established. By government decision, the plant was designated as a pilot facility among refractory producers for automation, mechanisation, and the development of new products and technologies. The ring kilns were replaced by tunnel kilns with automatic control of the firing process, rotary kilns were installed, press equipment with mechanised removal and refractory product loading onto kiln cars were installed.



In 1995, the Zaporizhzhia Refractory Plant was reorganised into Open Joint Stock Company "ZAPOROZHOGNEUPOR".

The next modernisation of equipment was carried out in 1997: presses made by the German company Laeis-Bucher with a force of 1,250, 1,600, 2,000, and 2,500 tf were installed. The grinding areas of the shops were reconstructed, packaging equipment was purchased and put into operation, and the mechanical repair shop was re-equipped to manufacture high-precision and high-strength press tools from a range of high-alloy steels. All of this enabled the plant to achieve a new level of product quality.

In 2011, the company was reorganised into Public Joint Stock Company "ZAPOROZHOGNEUPOR".

In 2013, PJSC "ZAPOROZHOGNEUPOR" became part of Metinvest Group, marking a new milestone in the company's development. PJSC "ZAPOROZHOGNEUPOR" was now faced with the task of meeting the essential needs of the Metinvest Group companies in high-quality refractory products. One of the areas of focus for PJSC "ZAPOROZHOGNEUPOR" became the development of advanced technologies and the establishment of industrial production for high-tech refractory products and unshaped materials, which had until then been imported to meet the demand in the Ukrainian market.

So, in May 2013, PJSC "ZAPOROZHOGNEUPOR" put into commercial operation a new shop for producing high-tech refractory castables, designed and equipped with automated, high-precision equipment from EIRICH.

In 2015, the company set up a service department to improve the efficiency of technical solutions for maintaining the lining of metallurgical facilities and reduce repair costs for metallurgical enterprises. An unshaped refractories shop was set up on the premises of the silicon carbide refractories shop and the refractory castables and bodies shop.

In 2016, the company was reorganised into Private Joint Stock Company "ZAPOROZHOGNEUPOR".

In 2017, PJSC "ZAPOROZHOGNEUPOR" set a record for lining durability in Ukrainian steelmaking. Azovstal's first basic oxygen furnace lasted 6,842 heats before undergoing a major overhaul shutdown.

In 2018, following the expansion of the service function, the Service Department was reorganised, and two service centres were established: the Zaporizhzhia Service Centre and the Mariupol Service Centre.

The production of periclase-carbon refractories, one of the highest-margin products, increased by 52.8%.

To date, PJSC "ZAPOROZHOGNEUPOR" is Ukraine's largest producer of refractories, offering an unmatched variety of high-quality products, including more than 1,200 main grades of refractories, unshaped materials, and castables.

ALUMINOSILICATE PRODUCTION

Fire clay (chamotte) products

The plant's production activities began in 1933 with a workshop for the production of fire clay products. Due to its early development, production is characterized by the widest range of refractory products produced. The range of the workshop includes ladle, composite particularly composite shapes, general-purpose products, stopper, center tubes, hoppers, siphons, stars, nozzles, etc. The grinding section is equipped with drying drums, clay crushing equipment, ball mills, general grinding tube mills, vibrating screens, which allows for high-quality preparation of powders of the required grain size. The pressing section is equipped with hydraulic presses (Laeis-Bucher) with a force of 1600 tf and DRP-350), mechanical presses CM 1085 with a system of cradle conveyors transporting semifinished products to charging areas, ensuring a wide range of products. The workshop is equipped with 168 m and 87 m long tunnel furnaces with an automatic firing processes. The workshop includes a plastic pressing section dedicated to producing composite-shaped

products and steel casting blanks. Finished products are stacked and loaded using electric forklifts and overhead cranes. The products are packed in bags, wrapped in paper and secured with metal straps. Upon agreement with the consumer, other types of packaging are provided to improve the appearance of packages and ensure safety of products during transportation.

GENERAL-PURPOSE CHAMOTTE REFRACTORY PRODUCTS GOST 390-96

Shape and dimensions TECHNICAL SPECIFICATION TU U 23.2-00191885-031:2021

Parameter		Norm fo	Norm for the grade		
1 at afficter		ShA (IIIA)	ShB (ШБ)		
1 Mass fraction, %: Al ₂ O ₃ , min		30	28		
2 Refractoriness, ⁰ C, min		1690	1650		
3 Apparent porosity, %,					
max, for products of the subgroup	I II	24 30	24 30		
4 Cold crushing strength, MPa, min, for products of the subgroup	I	20 15	- -		
5.Refractoriness under load, °C, min		1300	-		

REFRACTORY PRODUCTS FOR BOTTOM (UPHILL) TEEMING OF STEEL DSTU GOST 11586:2006 (GOST 11586-2005, IDT)

	Norm for the grade		
Parameter	ShS-32 (IIIC-32)	ShS-28 (IIIC-28)	
1 Mass fraction, %:	32	28	
Al ₂ O ₃ , min			
2 Refractoriness, ⁰ C, min	1690	1670	
3 Permanent change in dimensions on heating,	0.4	0.5	
at 1350°C, %, max			
4 Apparent porosity, %,	15-24	15-26	
5 Thermal shock resistance, number of thermal cycles, min, for risers, runners, and end runners; thermal cycles (heating to 800 °C and air cooling).	1	1	

Note:

- 1. For the products of grade ShS-28 made by the plastic method, an apparent porosity slightly above 28% is permissible.
- 2. For the products of grade ShS-28, subject to agreement between the parties, the following specifications are permissible: refractoriness: not lower than $1650\,^{\circ}$ C; permanent change in dimensions on heating: not more than 1.0%.

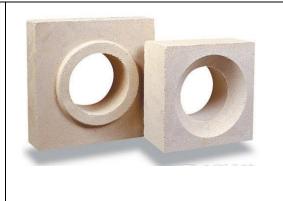
REFRACTORY PRODUCTS FOR BOTTOM (UPHILL) TEEMING OF STEEL TECHNICAL REQUIREMENTS TV 00191885-084:2022

	Norm for the grade
Parameter	ShST-32 (IIICT-32)
1 Mass fraction, %:	32
Al ₂ O ₃ , min	
2 Refractoriness, ⁰ C, min	1690
3 Permanent change in dimensions on heating, at	0.4
1350°C, %, max	
4 Apparent porosity, %,	17.0 – 27.0
5 Thermal shock resistance, number of thermal cycles,	
min, for risers, runners, and end runners, thermal cycles (heating to 800 °C and air cooling).	1

CHAMOTTE REFRACTORY PRODUCTS FOR OPEN-HEARTH FURNACE BRICKWORK TECHNICAL SPECIFICATION TU U 23.2-00191885-033:2023

Parameter		Norm for the grade		
i ai ametei		ShAM (IIIAM)	ShBM (ШБМ)	
1. Mass fraction, %:				
Al ₂ O ₃ , min		30.0	28.0	
2 Refractoriness, ⁰ C, min		1690	1650	
3. Permanent change in dimensions heating, at 1400°C, %, max	s on	-	-	
4. Apparent porosity, %, max, for products of the subgroup	I	24.0	24.0	
for products of the subgroup	II	30.0	30.0	
5. Cold crushing strength, MPa, min,				
for products of the subgroup	I	20.0 15.0	- -	
6.Refractoriness under load, °C, min				
		1300	-	
Note 1 For the markets of	1	Cl-DMfurstanings.		

Note 1. For the products of grade ShBM, refractoriness not lower than 1630 °C is permissible.


Note 2. For shaped products of grades ShAM, subject to agreement with the customer, a cold crushing strength of not less than 10 MPa is permissible.

REFRACTORY STOPPER PRODUCTS FOR STEEL CASTING FROM LADLES DSTU GOST 5500:2006 (GOST 5500 -2001, IDT)

Parameter	Norm for the grade		
	ShSP-32 (ШСП-32)	ShSP-35 (ШСП-35)	
1. Mass fraction on ignition basis, %:	22	25	
Al ₂ O ₃ , %, min	32	35	
2. Refractoriness, ⁰ C, min	1690	1710	
3. Apparent porosity, %,			
	15-26	15-26	
4. Permanent linear shrinkage, %, max, at:	1690	1710	
1350 °C	0.3	0.3	
5 .Thermal shock resistance, number of thermal			
cycles, min		1	

REFRACTORY PRODUCTS FOR SLIDE GATES OF STEEL LADLES SPECIFICATION TUU 23.2 – 00190503--460:2021

Parameter	Norms for well blocks of grade ShG - 32 (ШΓ - 32)
1. Mass fraction on ignition basis, %: Al ₂ O ₃ , %, min	32
2. Apparent porosity, %, max	23
3. Cold crushing strength, MPa, min,	15

PRODUCTS FOR THE STEEL LADLE LINING

GOST 5341-98

Parameter	norm for grades						
	ShKU-37 (ШКУ-37)	ShKP-37 (ШКП-37)	ShKU-39 (ШКУ-39)	ShKP-39 (ШКП-39)	ShKU-41 (ШКУ-41)	ShKP-41 (ШКП-41)	ShKU-42 (ШКУ-42)
Mass fraction,%:							
Al ₂ O ₃ , min							
	37	37	39	39	41	41	42
Fe ₂ O ₃ , max							3.5
Refractoriness, ⁰ C,							
min	1730	1730	1750	1750	1750	1750	1750
Apparent porosity, %,							
max							
	18	16	18	16	18	16	18
Cold crushing							
strength, N/mm ² , min							
	30	40	30	40	30	40	40
Softening starting							
temperature, ⁰ C, min							
	1400	1410	1430	1450	1430	1450	1400
Permanent linear							
shrinkage							
at 1400 0C, %,							
max	0.3	0.2	0.3	0.2	0.3	0.2	0.3
Thermal shock							
resistance, number of							
thermal cycles,							
min	4	3	4	3	4	3	4

Note: The specifications for the products of grades ShKU-41 and ShKP-41 are subject to agreement with the customer.

REFRACTORY PRODUCTS FOR BLAST FURNACE BRICKWORK DSTU 2345-94 (GOST 1598-96)

Parameter	Value for the products of grades				
	ShPD-43	ShPD-41	ShPD-39		
	(ШПД-43)	(ШПД-41)	(ШПД-39)		
Mass fraction, %:					
Al ₂ O ₃ , min	43	41	39		
Fe ₂ O ₃ , max	1.5	1.5	1.5		
Refractoriness, ⁰ C, min					
	1750	1750	1750		
Softening starting temperature, ⁰ C,					
min					
	1530	1500	1440		
Permanent linear shrinkage					
at 1450 °C, %, max					
	0.2	0.2	0.2		
Apparent porosity, %, max					
ripparent perestry, 70, man	12	12	16		
Cold crushing strength, N/mm ² ,		1-			
1					
min for the products Nos.:					
5,6,7,8					
the rest					
	40	40	-		
	70	70	50		

REFRACTORY PRODUCTS FOR ROTARY KILN LINING DSTU GOST 21436:2006

Parameter	Norm for grades		
	MLTs	MKRTs	ShTsU
	(МЛЦ)	(МКРЦ)	(ШЦУ)
Mass fraction,%:			
Al ₂ O ₃ , min	62	45 (50)	32
Refractoriness, ⁰ C, min	1800	1750	1710
Softening starting temperature, ⁰ C, min			
	1450	1400	1370
Apparent porosity, %,			
max	24	22	20
Cold crushing strength, N/mm ² , min			
	25	30	25
Thermal shock resistance, thermal cycles, min			
	4	3	4
Permanent change in dimensions, %,			
max, at a temperature of $({}^{0}C)$:			
1500	0.4		
1400		0.5	0.3

CHAMOTTE REFRACTORY PRODUCTS FOR OPEN-HEARTH FURNACE REGENERATOR CHECKERS

TECHNICAL SPECIFICATION TUU 23.2-00190503-458:2021

Parameter	Norm for the products of grade			
	ShKN-41	ShN-38	ShN-37	
	(ШКН-41)	(ШН-38)	(ШН-37)	
Mass fraction, %:				
Al ₂ O ₃ , min	41	38	37	
Apparent porosity, %,				
max	21	21	21	
Cold crushing strength, N/mm ² , min				
	26	22	22	
Refractoriness under the load of 0.2 N/mm ² ,				
$(T_{0.5})$, ${}^{0}C$, min				
	1450	1400	1400	
Permanent change in dimensions on heating at				
1400 °C with 2 hours exposure, %, max				
	0.4	0.4	0.4	
Refractoriness, ⁰ C, min				
	-	1730	1730	

REFRACTORY PRODUCTS FOR BRICKWORK OF HOT BLAST STOVES AND HOT BLAST AIR DUCTS OF BLAST FURNACES TECHNICAL SPECIFICATION TUU 23.2-00191885-038:2020

Parameter	Parameter value for grade			
	ShV-28	ShV-37	ShV-42	
	(ШВ-28)	(ШВ-37)	(ШВ-42)	
1. Mass fraction, %:				
Al ₂ O ₃ , min	28.0	37.0	42.0	
Fe ₂ O ₃ , max	-	-	1.7	
2. Refractoriness, ⁰ C, min	1670	1730	1750	
3. Apparent porosity, %, max, of products for:				
- checkers - walls, domes, and air ducts	25.0	23.0	20.0	
, ,	27.0	25.0	20.0	
4. Cold crushing strength, N/mm ² , min, of products for:				
- checkers - walls, domes, and air ducts	15.0	20.0	40.0	
	15.0	20.0	30.0	
5. Deformation temperature under load (softening point), ⁰ C, min	1270	1330	1500	

ZAPORIZHZHIA REFRACTORIES manufactures checker products of grade ShV 37 No. 80a and ShV 42 No. 80 a - 19-hole

CHAMOTTE REFRACTORY PRODUCTS FOR LIME KILN LINING TECHNICAL SPECIFICATION TUU 23.2-00191885-045:2022

Parameter	Norm for the products of grade
	ShY
	(ШИ)
Mass fraction of Al ₂ O ₃ , %, min	32
Refractoriness, ⁰ C, min	1690
Apparent porosity, %, max	20
Cold crushing strength, N/mm ² ,	
min	30
Refractoriness under load, °C, min	
	1300

CHAMOTTE REFRACTORY PRODUCTS FOR HOT METAL LADLE LINING TECHNICAL SPECIFICATION TUU 23.2-00191885-034:2024

Physical and chemical parameters

Parameter	Norm for grades	
	ShChU-37	ShChU-41
	(ШЧУ-37)	(ШЧУ-41)
Mass fraction of Al ₂ O ₃ ,%, min		
	37	41
Refractoriness, ⁰ C, min	1730	1730
Apparent porosity, %, max	20	20
Cold crushing strength, MPa,		
min	25	25
Permanent change in dimensions on heating at 1400 °C, %,		
max		
	0.4	0.4

CHAMOTTE REFRACTORY PRODUCTS FOR COKEMAKING FACILITIES TECHNICAL SPECIFICATION TU U 23.2-00191885-041:2022

	Norm for the products of grade			
Parameter	ShK-37 ShK-35		ShK-28	
	(ШК-37)	(ШК-35)	(ШК-28)	
		Typical brickwork area	as .	
	sole, doors, and	roof, doors, ports,	checkerwork, other	
	chambers of dry	walls of regenerators,	locations,	
	quenching plants,	gas burners,	chambers of dry	
	gas burners		quenching plants,	
			grate bars	
1	2	3	4	
1.Mass fraction, %:				
Al ₂ O ₃ , min	37	35	28	
Fe ₂ O ₃ , max	2.5	Not spe	ecified	
2 Refractoriness, °C,				
min	1730	1710	1670	
3. Apparent porosity, %,				
max	-	26	26	
within the range of	12-24	-	-	
4.Cold crushing strength, MPa, min	Norms in accordance	ce with the note to the ta	able	
5. Permanent change in dimensions on heating, %, max, at a temperature of:				
1350° C	+ 0.4	+ 0.4	+ 0.6	
1450° C		Not specified		
6.Thermal shock resistance, thermal cycles, min	Not specified	2	Not specified	

Note 2. For grade ShK-37, the norm for the cold crushing strength is:

- for linings of chambers of dry quenching plants with a thickness up to and including 65 mm and for sole products not less than 40 MPa; for thicknesses over 65 mm not less than 30 MPa;
- for end roof bricks, corbel area bricks, inspection door bricks, and inspection ports not less than 35 MPa;
 - door lining no less than 20 MPa.

The permanent change in dimensions on heating is not specified for chambers of dry quenching plants.

End of the table to TU U 23.2-00191885-041:2022

4		_	
1	')	2	Λ
1	<u> </u>	3	7

Note 3. For grade ShK-35, the norm for the cold crushing strength is:

- for end roof bricks, corbel area bricks, inspection door bricks, and inspection ports not less than 25 MPa;
 - -for products for other brickwork areas no less than 20 MPa.

For gas burners, the norm for the following parameters is:

- the cold crushing strength and the permanent change in dimensions on heating not specified;
 - the apparent porosity within the range of (12 20)%;
- the thermal shock resistance (at least 2 thermal cycles without cracking) is specified only for gas burners
- **Note 4.** For grade Shk-28, the norm for the permanent change in dimensions on heating is specified only for products for other brickwork areas;

The norm for the cold crushing strength is:

- checkerwork no less than 12 MPa;
- for linings of chambers of dry quenching plants no less than 15 MPa.

Note 5. For grades ShK-28, ShK-35, and ShK-37 produced from non-fired raw materials (kaolin) using plastic molding or vibrocasting methods, an increase in apparent porosity up to 28% is permissible.

HIGH-ALUMINA PRODUCTS

The shop was commissioned in 1961 for the production of high-alumina refractories characterised by high strength and refractoriness, with Al₂O₃ content ranging from 62% to 85%. The shop's products are used for lining blast furnace stoves, hot blast ducts, secondary metallurgy pipelines, and other thermal equipment in non-ferrous metallurgy. The shop is equipped with high-efficiency grinding equipment, domestically produced mechanical presses, and hydraulic presses manufactured by Laeis-Bucher. The products are fired in a high-temperature tunnel kiln with a length of 156 metres and a drying section of 45 metres. The tunnel kiln has been modernised and has computerised process control.

All products are packed into packages at the finished product warehouse. The high-alumina products shop at ZAPORIZHZHIA REFRACTORIES is the only one of its kind in Ukraine. The shop's products are in demand in many countries around the world, as well as on the domestic market.

REFRACTORY PRODUCTS FOR BRICKWORK OF HOT BLAST STOVES AND HOT BLAST AIR DUCTS OF BLAST FURNACES TECHNICAL SPECIFICATION TUU 23.2-00191885-038:2020


Parameter	Parameter value for grade		
	MKRV-50	MKV-72	MKVN-72
	(MKPB-50)	(MKPB-50)	(MKBH-72)
1. Mass fraction, %:			
Al ₂ O ₃ , min	50.0	72.0	72.0
Fe_2O_3 , max	1.5	1.5	1.5
2. Apparent porosity, %, max, of products for: - checkers			
- walls, domes, and air ducts	21.0	21.0	23.0
	23.0	24.0	-
3. Cold crushing strength,			
- checkers	40.0	50.0	40.0
- walls, domes, and air ducts	30.0	30.0	-
4. Deformation temperature under load (softening point), °C, min	1540	1550	1580

Note: Subject to agreement with the customer, the mass fraction of Fe₂O₃ shall not exceed 2.0%.

CORUNDUM AND HIGH-ALUMINA REFRACTORY PRODUCTS TECHNICAL SPECIFICATION TU U 23.2-00191885-040:2020

Parameter	Parameter value for grade			
	MKS-72 (MKC-72)	MKSK-72 (MKCK-72)	MLS-62 (МЛС-62)	MKRS-50 (MKPC-50)
Mass fraction, %				
Al ₂ O ₃ , min	72	72	62	50
Fe ₂ O ₃ , max	2.0	2.0	2.0	1.8
Apparent porosity, %, max	24	24	24	24
Cold crushing strength, N/mm ² , min	30	30	25	20
Deformation temperature under load (softening point), ⁰ C, min	1500	1500	1450	1400
Permanent linear change (permanent linear shrinkage), %, max, at a temperature, ⁰ C:				
1400	-	-	-	0.5
1500	-	-	0.4	-
1600	1.0	1.0	-	-

MULLITE-SILICA REFRACTORY PRODUCTS FOR STEEL LADLE LINING TECHNICAL SPECIFICATION TU U 26.2-00191885-017:2011

Parameter	Norm for the products of grade		
	MKRK-45	MKRK-48	MKRK-50
	(MKPK-45)	(MKPK-48)	(MKPK-50)
1 Mass fraction, %:			
Al ₂ O ₃ , min	45	48	50
Fe ₂ O ₃ , max	1.8	1.8	1.8
2 Apparent porosity, %, max	23	22	22
3 Cold crushing strength, N/mm ² , min	30	40	50
4 Refractoriness under load, ⁰ C, min	1400	1450	1480
5 Permanent change in dimensions on heating, at	0.5	0.4	0.4
1400°C, %, max			
6 Thermal shock resistance (heating up to 1300°C,	3	3	3
water cooling), thermal changes, min			
7 Refractoriness, ⁰ C, min	1750	1750	1750

REFRACTORY PRODUCTS FOR SLIDE GATES OF STEEL LADLES TU U 23.2-00190503-460:2021

Parameter	Norm for well blocks of grade		
	MKG-72 No. 1 (ΜΚΓ-72 № 1),	МКG-80 No. 1 (МКГ-80 № 1),	
	MKG 72 No. 2 (MKΓ 72 № 2)	MKG -80 No. 2 (MKΓ -80 № 2)	
1. Mass fraction, %: Al ₂ O ₃ , min Fe ₂ O ₃ , max	72.0 1.4	80.0 1.4	
2. Apparent porosity, %, max	24	23	

Note: Subject to agreement with the customer, the mass fraction of Fe₂O₃ shall not exceed 2.0%.

MULLITE-CORUNDUM REFRACTORY PRODUCTS OF GRADE MKS-85 (MKC-85)

Parameter	Parameter value for grade MKS-85
Mass fraction, %	
Al ₂ O ₃ , min	85
Fe ₂ O ₃ , max	2.0
Apparent porosity, %, max.	23
Cold crushing strength, N/mm ² , min	70
Softening starting temperature, ⁰ C, min	1580
5 Permanent change in dimensions on heating (at 1600°C),	
%, max	0.5

Physical and chemical parameters, drawings, overall dimensions of products, deviations from overall dimensions, and appearance characteristics - in accordance with the customer's contract (specification).

HIGH-DUTY REFRACTORY PRODUCTS FOR BRICKWORK OF HOT BLAST DUCTS OF BLAST FURNACES OF GRADE MKT-80 (MKT-80)

Parameter	Parameter value for grade MKT-80
Mass fraction, %	
Al ₂ O ₃ , min	80
Fe ₂ O ₃ , max	2.0
Refractoriness, ⁰ C, min	1750
Apparent porosity, %, max	23
Cold crushing strength, N/mm ² , min	40
Softening starting temperature, ⁰ C, min	1600

Products are manufactured as agreed with the customer.

Physical and chemical parameters, drawings, overall dimensions of products, deviations from overall dimensions, and appearance characteristics - in accordance with the customer's contract (specification).

The shape and dimensions shall meet the requirements of TUU 23.2-00191885-038:2020.

LIGHTWEIGHT INSULATING REFRACTORY PRODUCTS DSTU 2342-94 (GOST 5040-96)

Parameter	Value for the products of grades		
	ShKL-1,3	ShL-1,3	ShL-1,0
	(ШКЛ-1,3)	(ШЛ-1,3)	(ШЛ-1,0)
Apparent density, g/cm ³ , max	1.3	1.3	1.0
Permanent linear shrinkage			
(growth) with 2 hours exposure, %, max	1.0	1.0	1.0
at a temperature, ⁰ C	1400	1300	1300
Cold crushing strength, N/mm ² , min			
	3.5	3.5	3.0
Thermal conductivity, W/(m·K), max, at mean			
temperature, °C:			
350 <u>+</u> 25			
650 <u>+</u> 25*	0.5	0.6	0.5
	0.6	0.7	0.6
*Measured upon customer request			

QUARTZITE NON-FIRED REFRACTORY PRODUCTS FOR LADLES TECHNICAL REQUIREMENTS TV 00191885-087:2022

Parameter	Norm for products KBKZhS (КБКЖС)
Mass fraction of SiO ₂ , %, min	95
Mass fraction of Na ₂ O + K ₂ O*, %, max	1.2
Moisture, %, max	0.8
Refractoriness, ⁰ C, min	1690
Apparent porosity after drying, %, max	18
Cold crushing strength, MPa, min	17
Apparent density, g/cm ³ , min	2.14

Note*. The mass fraction of $Na_2O + K_2O^*$ is measured subject to agreement between the manufacturer and the customer. It is measured optionally and reflected in the quality certificate.

ALUMINOSILICATE REFRACTORY AND HIGH-DUTY REFRACTORY TUBES FOR STEEL PURGING IN LADLES WITH

INERT GASES AND FOR TUNDISH STOPPERS

Parameter	Parameter value for grade MKF-72 (МКФ-72)
1. Mass fraction, %:	
Al ₂ O ₃ , min	74
Fe ₂ O ₃ , max	2
2. Apparent porosity, %, within the range	18-23
3. Permanent change in dimensions on heating at 1600 0 C, max	0.2
4. Thermal shock resistance (heating up to 800 0 C, cooling - by air)	After seven thermal cycles, there shall be no through cracks, dividing the tube into parts

Note. Physical and chemical parameters, drawings, overall dimensions of products, deviations from overall dimensions, and appearance characteristics - in accordance with the customer's contract (specification).

Magnesia refractories

The magnesia refractories shop produces a wide range of periclase, periclase-chromite, chromite-periclase, periclase-carbon, alumina-periclase-carbon, corundum-carbon products and unshaped refractory materials used for the lining of openhearth, electric arc, basic oxygen, rotary furnaces and other thermal facilities. Magnesia refractories are and will continue to be the primary structural material for lining steelmaking and other metallurgical facilities in the near future. Carbon-containing refractories, used in advanced metallurgical processes, continue to be the most promising materials. Among carbon-containing refractories, periclase-carbon refractories play a key role in modern steelmaking, being used for

lining basic oxygen furnaces, electric arc furnaces, steel teeming ladles, and more. The production facility is equipped with hydraulic presses from Laeis-Bucher with a force of 1,250, 1,600, 2,000, and 2,500 tf. To improve product quality, the pressing area is equipped with automated systems that load the pressed products onto a furnace car based on a pre-set program, alongside computerised monitoring of production parameters. The products are fired in a 156-meter-long tunnel furnace in

an automatic firing mode. The tunnel kiln has been modernised and has computerised process control.

At the finished goods warehouse, after sorting and acceptance by the company's technological control department, the products are packed in packages, placed in corrugated cardboard boxes, with the top edges of the packages protected by corner protectors. They are then tied with polyester straps and wrapped in elastic polyethylene film, providing a good appearance and guaranteeing the safety of the products.

HIGH-DUTY PERICLASE-CARBON REFRACTORY PRODUCTS FOR BASIC OXYGEN FURNACES TECHNICAL SPECIFICATION TUU 23.2-00191885-023:2025

Parameter	Parameter value for grade									
	РИКК- 1 (ПУКК- 1)	РИКК- 2 (ПУКК- 2)	РИКК- 3 (ПУКК- 3)	РИКК- 4 (ПУКК- 4)	РИКК- 5 (ПУКК- 5)	РИКК- 6 (ПУКК- 6)	РИКК- 7 (ПУКК- 7)	РИКК- 8 (ПУКК- 8)	РИКК- 9 (ПУКК- 9)	РИКК -10 (ПУКК- 10)
Mass fraction		2)	3)	4)	[3)	0)	1)	0)	9)	10)
MgO, min	93.0	93.0	93.0	93.0	93.0	93.0	91.0	91.0	91.0	91.0
Al ₂ O ₃ , within	-	-	-	_	-	-	3.0-	3.0-	3.0-	3.0-
the range of							5.0	5.0	5.0	5.0
SiO ₂ , max	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Fe ₂ O ₃ , max	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Mass fraction of total carbon (C), %, within the range of	5.0- 10.0	10.0- 14.0	10.0- 14.0	5.0- 10.0.	5.0- 10.0	10.0- 14.0	5.0- 10.0	10.0- 14.0	5.0- 10.0	10.0- 14.0
Cold crushing strength, N/mm², min	35.0	35.0	32.0	35.0	35.0	35.0	35.0	35.0	40.0	40.0
Apparent porosity, %, max	6.0	6.0	6.0	5.0	5.0	5.0	5.0	5.0	4.0	4.0
Apparent density, g/cm ³ , min	2.88	2.88	2.88	2.88	2.90	2.90	2.90	2.90	2.95	2.95

Grades PUKK-1, PUKK-2 – for the lining of the basic oxygen furnace bottom (based on sintered periclase);

Grades PUKK-3, PUKK-4 – for the lining of the lower cone of a basic oxygen furnace (based on sintered and fused periclase);

Grade PUKK-5 – for the lining of the upper cone of a basic oxygen furnace (based on fused periclase);

Grade PUKK-6 – for the lining of the cylindrical zone of a basic oxygen furnace (based on fused periclase);

Grades PUKK-7, PUKK-8 – for the lining of the upper cone of a basic oxygen furnace (based on fused and sintered periclase with an antioxidant);

Grades PUKK-9, PUKK-10 – for the lining of the cylindrical zone of a basic oxygen furnace (based on fused periclase with an antioxidant).

The shape and dimensions of the products are in accordance with TUU 23.2-00191885-023:2025"High-duty periclase-carbon refractory products for basic oxygen furnaces" and the customer's drawings.

Dimensional tolerances:

For sizes up to $400 \text{ mm} \pm 1.0 \text{ mm}$

For sizes greater than 400 mm \pm 2.0 mm

PERICLASE-CARBON REFRACTORY PRODUCTS FOR THE LINING OF STEEL TEEMING LADLES TUU 23.2-00191885-024:2025

Parameter	Norm for grades			
	PU-9	PU-10		
	(ПУ-9)	(ПУ-10)		
Mass fraction, %				
MgO, min.	93.0	91.0		
Al ₂ O ₃ , within the range	-	3.0-5.0		
CaO, max.	1.5	1.5		
SiO ₂ , max.	1.5	1.5		
Fe ₂ O ₃ , max.	1.0	1.0		
Mass fraction of total carbon (C), %, within the range	n 10-15	10-15		
Ultimate compression strength, N/mm ²	2,			
min.	35.0	35.0		
Open porosity, %, max.				
	6.0	6.0		
Apparent density, g/cm ³ , min.				
	2.90	2.90		

Products intended for the lining of steel teeming ladles:

- grades PU-10 for the slag zone lining (with the addition of an antioxidant);
- grades PU-9 for the wall and bottom lining.

The shape and dimensions of the products are according to TUU 23.2-00191885-024:2025 "Periclase-carbon refractory products for the steel teeming ladle lining" and the customer's drawings.

Tolerances for the lining layer and the brickwork thickness $\pm \ 0.5 \ mm$

HIGHLY REFRACTORY MAGNESIA PRODUCTS FOR STEEL TAPHOLES OF BASIC OXYGEN AND OPEN-HEARTH FURNACES TU U 23.2-00191885-042:2022

Parameter	Norm for products of grade PLK-94
1 Mass fraction, %:	
MgO, min.	94.5
Fe ₂ O ₃ , max.	1.5
2 Ultimate compression strength, N/mm ² ,	
min.	
	30
3 Open porosity, %, max.	17

PERICLASE-CARBON REFRACTORY PRODUCTS FOR STEEL TAPHOLES OF BASIC OXYGEN AND OPEN-HEARTH FURNACES. TU U 23.2-00191885-025:2025

Parameter	Norm for products of			
	PUL grade			
1.Mass fraction (on ignition basis), %				
MgO, min.	92.0			
AL ₂ O ₃ , within the range	3.0-5.0			
CaO, max.	1.5			
SiO ₂ , max.	1.5			
Fe ₂ O ₃ , max.	1.0			
C, within the range	8.0-15.0			
2. Apparent density, g/cm ³ , min.	2.95			
3. Ultimate compression strength, N/mm ² , min.	37.0			
4. Open porosity, %, max.	5.0			
Note. Fused periclase with an MgO content of no less than 97% is used				

PERICLASE REFRACTORY PRODUCTS

GOST 4689-94

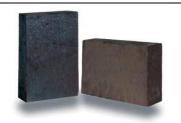
Parameter	Norm for grades				
	P-91	P-90	P-89		
	(П-91)	(П-90)	(П-89)		
1	2	3	4		
1.Mass fraction, %					
magnesium oxide MgO, min	91.0	90.0	89.0		
calcium oxide CaO, max	3.0	4.0	4.5		
iron oxide Fe ₂ O ₃ , max	2.5	2.5	-		
silicon dioxide SiO2, max	3.0	3.0	-		
2.Apparent porosity, % max					
	22.0	23.0	26.0		
3.Cold crushing strength, N/mm ² , min					
	60.0	50.0	40.0		
4. Refractoriness under load, ⁰ C, min					
	1550	1550	1500		

PERICLASE REFRACTORY PRODUCTS TECHNICAL SPECIFICATION TU U 26.2-00191885-019:2011 with amendments 1-4

Parameter	Norm for grades							
	P-96	P-94	P-93	P-92Si	P-91Si	P-91-1	P-90-1	P-89-1
	(П-96)	(П-94)	(П-93)	(П-92Si)	(П-91Si)	(П-91-1)	(П-90-1)	(П-89-1)
1	2	3	4	5	6	7	8	9
1. Mass fraction on								
ignition basis,								
%								
MgO, min	96.0	94.0	93.0	92.0	91.0	91.0	90.0	89.0
CaO, max	1.5	2.0	2.5	3.0	3.0	3.0	4.0	4.0
Fe ₂ O ₃ , max	1.0	1.5	1.5	2.0	2.0	-	-	-
Fe ₂ O ₃ , within the range	-	-	-	-	-	2.5-	-	2.5-
of						6.0		8.5
SiO ₂ , max	1.4	2.5	3.0	4.0	5.0	1.8	-	2.0
2.Apparent porosity, %								
max	18.0	19.0	20.0	20.0	20.0	20.0	20.0	20.0
3.Cold crushing								
strength, N/mm ² , min	70.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
4. Refractoriness under								
load, ⁰ C, min	1600	1550	1530	1530	1530	1530	1500	1500

HIGH-DUTY PERICLASE-CHROMITE REFRACTORY PRODUCTS FOR BRICKWORK OF STEELMAKING FURNACE ROOFS DSTU 2573-94

Parameter	Norm for the products of grade		f grade
	PKhSP (ПХСП)	PKhSUT (ПХСУТ)	PKhSU (IIXCY)
1.Mass fraction (on ignition basis), %		,	,
MgO, min	70	70	65
Cr ₂ O ₃ , within the range of	7-15	7-15	7-15
2. Apparent porosity, %, max	16	18	20
3. Cold crushing strength, N/mm ² , min	37.5	35.0	32.5
4. Refractoriness under load, °C, min	1560	1540	1540
5. Permanent change in dimensions at 1650 °C, with 3 hours exposure %, max	0.7	0.7	0.8
6.Thermal shock resistance (heating up to 1300°C, water cooling), thermal cycles, min	4	6	5


HIGH-DUTY PERICLASE-CHROMITE DIRECT-BONDED OPTIMISEDAND MAGNESIA-SPINEL REFRACTORY PRODUCTS FOR BRICKWORK OF OPEN-HEARTH FURNACE ROOFS TECHNICAL SPECIFICATION TU U 23.2-00191885-004:2022

Norm for the products of grade			
PKhSOSP** PKhSOS		PKhShS	
(ПХСОСП**)	(ПХСОС)	(ПХШС)	
⁄о:			
65.0	65.0	60	
12.0-17.0	12.0-17.0	11.0-17.0	
2.0	2.0	-	
7.0-13.0	7.0-13.0	7.0-11.0	
3.0-6.0	3.0-6.0	max 8.0	
3.0	3.0	3.0	
17.0	17.0	18.0	
3.12	3.12	3.12	
35.0	35.0	30.0	
1630	1630	1600	
0.5	0.5	0.5	
8.0	8.0	8.0	
I			
	PKhSOSP** (IIXCOCII**) 6: 65.0 12.0-17.0 2.0 7.0-13.0 3.0-6.0 3.0 17.0 3.12 35.0 1630	(HXCOCH**) (HXCOC) 6: 65.0 65.0 12.0-17.0 12.0-17.0 2.0 2.0 7.0-13.0 7.0-13.0 3.0-6.0 3.0-6.0 3.0 3.0 17.0 17.0 3.12 3.12 35.0 35.0 1630 1630 0.5 0.5	

Note*. The mass fractions of Al₂O₃ and CaO are measured subject to agreement between the manufacturer and the customer.

Note**. For the products of grade PKhSOSP – using fused periclase with an MgO mass fraction of not less than 97 %.

HIGH-DUTY REFRACTORY PRODUCTS OF OPTIMISED COMPOSITION FOR ROTARY KILN LINING PKhTsOS (IIXIIOC)

Parameter	Norm for the products of grade PKhTsOS (ПХЦОС)
1.Mass fraction (on ignition basis), %	
MgO, min	68.0
Cr_2O_3 , within the range of	9.0-15.0
CaO, max	2.0
2. Apparent porosity, %, max	16.0
3. Cold crushing strength, N/mm ² , min	35.0
4. Refractoriness under load, °C, min	1640
5.Thermal shock resistance (heating up to 1300°C, water	8.0
cooling), thermal cycles, min	

HIGH-DUTY REFRACTORY PRODUCTS FOR ROTARY KILN LINING DSTU GOST 21436:2006

Parameter	PKhTs	KhPTs
	(ПХЦ)	(ХПЦ)
1.Mass fraction (on ignition basis), %		
MgO, min	65.0	42.0
Cr ₂ O ₃ , within the range of	8.0-18.0	20.0-30.0
2. Apparent porosity, %, max	24.0	25.0
3. Cold crushing strength, N/mm ² , min	25.0	20.0
4. Refractoriness under load, °C, min	1500	1450
5. Thermal shock resistance (heating up to 1300°C,	8.0	2.0
water cooling), thermal cycles, min		

HEAT-RESISTANT CHROMITE-PERICLASE PRODUCTS FOR THE LINING OF THERMAL EQUIPMENT IN METALLURGY TECHNICAL SPECIFICATION TU U 23.2-00191885-055:2025

Parameter	KhPTU	KhPTS
	(ХПТУ)	(XIITC)
1.Mass fraction (on ignition basis), %		
MgO, min	55.0	55.0
Cr ₂ O ₃ , within the range	15-22	14-22
2. Apparent porosity, %, max	20	23
3. Cold crushing strength, N/mm ² , min	25	20
4. Refractoriness under load, °C, min	1510	1510
5. Thermal shock resistance (heating up to 1300°C,	6	6
water cooling), thermal cycles, min		

OPTIMISED HEAT-RESISTANT CHROMITE-PERICLASE PRODUCTS FOR THE LINING OF THERMAL EQUIPMENT IN METALLURGY

KhPTUOS (XIITYOC)

Parameter	KhPTUOS
	(ХПТУОС)
1.Mass fraction (on ignition basis), %	
MgO, min	58.0
Cr ₂ O ₃ , within the range	15-17
2. Apparent porosity, %, max.	17
3. Cold crushing strength, N/mm ² , min	35
4. Refractoriness under load, °C, min	1640
5. Thermal shock resistance (heating up to 1300°C, water cooling),	8
thermal cycles, min	

HIGH-DUTY MAGNESIA-CHROMITE PRODUCTS FOR BASIC OXYGEN FURNACES TECHNICAL SPECIFICATION TUU 23,2-00190503-464:2021

Par	ameter	Norm for the products of grade of grade KhPKK (XПКК)
1 Mass fraction, %:		
MgO, min		55
Cr_2O_3 , within the range of		15-22
2 Cold crushing strength, N/n	mm ² , min	35
3 Apparent porosity, %, max		18
4 Refractoriness under the lo	ad of 0.2 N/mm ² ,(T _{0.5}), °C, min	1580
5 Thermal shock resistance, t	hermal cycles (R _{tr} , water, 1300),	5
min		

HIGH-DUTY CHROMITE-PERICLASE PRODUCTS OPTIMISED FOR BASIC OXYGEN FURNACES TUU 26.2-00191885-007:2009 with amendments 1-3

Parameter	Norm for the KhPKKOS products
1.Mass fraction, %	
MgO, min	65.0
Cr ₂ O ₃ , within the range of	12.0 - 17.0
SiO ₂ , max	2.0
CaO, max	3.0
Fe ₂ O ₃ , within the range of	7.0-13.0
AL ₂ O ₃ , within the range of	3.0-6.0
2.Apparent porosity, %, max	16.0
3.Cold crushing strength, MPa, min	50
4.Refractoriness under load, °C, min	1630
5.Thermal shock resistance, thermal cycles, min	9

MAGNESIA UNFIRED NOZZLES AND COLLECTING NOZZLES

TECHNICAL SPECIFICATION TUU 23.2-00190503-460:2021

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	PBS-88 (ПБС-88)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mass fraction on	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ignition basis, %:	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO, min	88.0
Fe ₂ O ₃ , max Cr ₂ O ₃ , within the range of 2 Loss on ignition, %, within the range of 3 Apparent porosity, %, max 4 Refractoriness, °C, min -	Al_2O_3 , min	-
Cr ₂ O ₃ , within the range of 2 Loss on ignition, %, within the range of 3 Apparent porosity, %, max 4 Refractoriness, °C, min -	SiO ₂ , max	-
2 Loss on ignition, %, within the range of 3 Apparent porosity, %, max 4 Refractoriness, °C, min -	Fe ₂ O ₃ , max	-
3 Apparent porosity, %, max - 4 Refractoriness, °C, min -	Cr ₂ O ₃ , within the range of	-
4 Refractoriness, °C, min -	2 Loss on ignition, %, within the range of	•
, ,	3 Apparent porosity, %, max	-
	4 Refractoriness, °C, min	-
5 Apparent density, g/cm ³ ,	5 Apparent density, g/cm ³ ,	2.55
min 2.55	min	2.33
6 Cold crushing strength, N/mm ² , min 25	6 Cold crushing strength, N/mm ² , min	25
7 Moisture content, %, max 0.5		0.5

Note. Unfired magnesia nozzles may be wax-coated subject to agreement between the manufacturer and the customer.

HIGH-DUTY CHROMITE-PERICLASE REFRACTORY PRODUCTS DSTU 2509-94(GOST 5381-93)

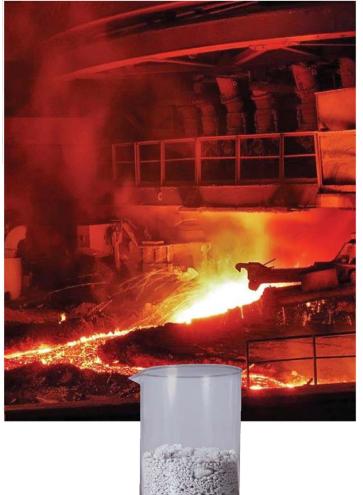
Parameter		Norm for	the product	s of grade	
	KhP-1	KhP -2	KhP-3	KhP-4	KhP-5
	(XII -1)	(XII -2)	(XII -3)	(XII -4)	(XII -5)
1.Mass fraction (on ignition basis), of	2/0				
MgO, min	46	46	42	42	42
Cr ₂ O ₃ , within the range of	22	22	20	15	15
SiO ₂ , max	6	7	8	8	8
2. Apparent porosity, %, max	20	22	23	24	25
3. Apparent density, g/cm ³ , min	2.95	2.95	2.95	-	-
4. Cold crushing strength, N/mm ² ,	30	27.5	25	25	20
min					
5. Refractoriness under load, °C,	1550	1520	1500	1500	1450
min					
6.Thermal shock resistance	2	2	2	-	-
(heating up to 1300°C, water					
cooling), thermal cycles, min					

PERICLASE-CHROMITE REFRACTORY PRODUCTS FOR OPEN-HEARTH FURNACE REGENERATOR CHECKERS TECHNICAL SPECIFICATION

TU U 23.2-00191885-014:2022

Parameter	Norm for the PKhN (IIXH) products
1.Mass fraction, %:	
MgO, min	65.0
Cr ₂ O ₃ , within the range of	10.0-15.0
Fe ₂ O ₃ , max	12.0
Al ₂ O ₃ , max	5.0
2.Apparent porosity, %, max	18.0
3. Cold crushing strength, N/mm ² , min	30.0
4.Refractoriness under load, °C, min	
	1540
5. Thermal shock resistance (heating up to 1300°C, water	6.0
cooling), thermal cycles, min	

ALUMINA-PERICLASE-CARBON REFRACTORY PRODUCTS FOR STEEL LADLE BOTTOM LINING BRICKWORK TECHNICAL SPECIFICATION TU U 23.2-00191885-051:2023


Parameter	АРU-65 (АПУ-65)	АРU-70 (АПУ-70)
1.Mass fraction, %		
Al ₂ O ₃ , min	65.0	70.0
MgO, min	9.0	9.0
CaO, max	-	-
Fe ₂ O ₃ , max	-	-
2.Mass fraction of total carbon (C), %,	within the range of 8-12	min 6
3.Cold crushing strength, MPa, min	35.0	45.0
4. Apparent porosity, %,		
max	10.0	6.0
5.Apparent density, g/cm ³ , min	2.95	3.20

CORUNDUM-CARBON REFRACTORY PRODUCTS FOR HOT METAL LADLE LINING BRICKWORK TECHNICAL SPECIFICATION TU U 23.2-00191885-051:2023

	Parameter value for grade		
Parameter	ZOZ brick KS-60 (KC-60)	ZOZ brick KS-85 (KC-85)	
1.Mass fraction, %			
Al ₂ O ₃ , min	60	85	
MgO, min	-	-	
CaO, max	1.0	1.0	
Fe ₂ O ₃ , max	2.0	2.0	
2.Mass fraction of total carbon (C), %,	min 8	min 8	
3.Cold crushing strength, MPa, min	35.0	35.0	
4. Apparent porosity, %,			
max	10.0	8.0	
5. Apparent density, g/cm ³ , min	2.80	3.0	

REFRACTORIES

The use of unmoulded refractories instead of artificial refractories

creates conditions for mechanizing the lining process. In some cases, the use of unmoulded refractories allows increasing the service life of the lining in thermal units and reduce the costs of performing refractory work.

GROUND CHAMOTTE AND REFRACTORY CLAY POWDERS

AND CHAMOTTE-CLAY POWDERS TECHNICAL SPECIFICATION TU U 23.2-00191885-052:2024

Powder grade	Parameter			
	Refractoriness, °C, min	Mass fraction on ignition basis, %, AL ₂ O ₃ , min	Moisture content, %, max	
PShKA (ПШКА)	1730	35	4	
РShКВ (ПШКБ)	1670	30	4	
PShTA (ПШТА)	1730	35	4	
РShТВ (ПШТБ)	1670	30	4	
PShTV (IIIIITB)	1580	28	4	
PShGT-2 (ПШГТ-	1730	36	5	
2)				

The grain size composition of ground refractory clay powders shall comply with the requirements specified in the table.

	Norm for the powders of grade			
Parameter	PShTA, PShTB, PShTV	PShKA,	PShGT-2	
		PShKB		
Passage through sieve No. 3.2 mm, %, min	-	100	-	
Passage through sieve No. 2, %, min	-	90	95	
Passage through sieve No. 1, %, min	100	-	1	
Passage through sieve No. 05, %, min	90	40	within the range of 40-	
Passage through sieve No. 009, %, within the range of	-	-	20-30	

Note. Subject to agreement between the manufacturer and the customer, ground chamotte, refractory clay powders, and chamotte-clay powders may be supplied with a different grain size distribution.

GROUND CHAMOTTE AND REFRACTORY CLAY POWDERS

AND CHAMOTTE-CLAY POWDERS TECHNICAL SPECIFICATION TU U 23.2-00191885-052:2024

Powder grade	Parameter			
	Refractoriness, °C, min	Mass fraction on ignition basis, %, AL ₂ O ₃ , min	Moisture content, %, max	
PGOSA (IIFOCA)	1730	35	12	
PGOSB (ПГОСБ)	1670	30	12	
Р GPKV (ПГПКВ)	1580	18	12	
PGOSV (ПГОСВ)	1580	28	12	
Р GРКВ (ПГПКБ)	1670	23	12	

Note. Subject to agreement between the manufacturer and the customer, clay powders of grades PGOSA, PGOSB, and PGOSV may be supplied with a moisture content not exceeding 18%.

The grain size composition of ground refractory clay powders shall comply with the requirements specified in the table.

	Norm for the powders of grade		
Parameter	PGOSA, PGOSB, PGOSV, PGPKB, PGPKV		
Passage through sieve No. 3.2 mm, %, min	100		
Passage through sieve No. 2, %, min	98		
Passage through sieve No. 1, %, min	-		
Passage through sieve No. 05, %, min	40		

Note. Subject to agreement between the manufacturer and the customer, chamotte and refractory clay powders may be supplied with a different grain size distribution.

ALUMINOSILICATE REFRACTORY MORTARS TECHNICAL SPECIFICATION TU U 23.2-00191885-037:2025

Parameter	Norm for grades				
	MSh 36 (MIII 36)	MSh 39 (MIII 39)	MShA 36 (MIIIA 36)	MShA 39 (MША 39)	MSh 42 (MIII 42)
Mass fraction, %:					
Al ₂ O ₃ , min	36	39	36	39	42
Fe ₂ O ₃ , max	2.0	2.0	2.0	2.0	2.0
sodium carbonate (Na ₂ CO ₃), within the range of	0.12-0.18	0.12-0.18	-	-	-
lignosulfonates (LST), within the range of	0.07-0.13	0.07-0.13	-	-	-
Loss on ignition, %, within the range of	1.3-3.2	1.3-3.2	1.3-3.2	1.3-3.2	1.3-3.2
max	-	-	-	-	-
Refractoriness, °C, min	1730	1730	1730	1730	1730
Moisture content, %, max	5	5	5	5	5
Grain size distribution, %, passage through sieve No.:					
1, min	100	100	100	100	100
0.5, min	95	95	95	95	95
0.09, within the range of	60-90	60-90	60-90	60-90	60-90

PLASTICIZED REFRACTORY MORTARS TECHNICAL SPECIFICATION TU U 23.2-00191885-037:2025

Parameter	Norm for grades			
	MMKR 45 (MMKP 45)	MMKR 50 (MMKP 50)	ММLA 62 (ММЛА 62)	MMK 72-1 (MMK 72-1)
Mass fraction, %:				
Al ₂ O ₃ , min	45	50	62	72
Fe ₂ O ₃ , max	3.0	2.8	2.0	2.0
sodium carbonate (Na ₂ CO ₃), within the range of	-	-	-	-
lignosulfonates (LST), within the range of	-	-	-	-
Loss on ignition, %, within the range of	1.5-3.3	1.5-3.3	1.5-3.3	-
max	-	-	-	3.0
Refractoriness, °C, min	1750	1770	1790	-
Moisture content, %, max	5	5	5	5
Grain size distribution, %, passage through sieve No.:				
1, min	-	-	-	-
0.5, min	100	100	100	100
0.09, within the range of	60-90	60-90	60-90	60-90

CHAMOTTE REFRACTORY MORTARS

DSTU 3475-96 (GOST 6137-97)

	Norm for the grade		
Parameter	МР-18 (МП-18)	MSh-28 (MIII-28)	
1. Mass fraction, %:			
Al ₂ O ₃ , min	18	28	
Fe ₂ O ₃ , max	-	-	
sodium carbonate (Na2CO3), within the range of	0.12-0.18	0.12-0.18	
lignosulfonates (LST), within the range of	0.07-0.13	0.07-0.13	
2 Loss on ignition, within the range of, %	1.3-3.0	1.3-3.0	
3. Refractoriness, ⁰ C, min	1610	1650	
4. Moisture content, %, max	6	5	
5. Grain size distribution, %, passage through sieve No.:			
2, min	100	100	
0.5, within the range of	60-94	60-94	

MULLITE BUFFER MIX OF GRADE MLBS-62 (MJI6C- 62) TECHNICAL SPECIFICATION TU U 23.2-00191885-036:2024

Parameter	Norm for MLBS-62
1. Mass fraction (on ignition basis), %:	
Al ₂ O ₃ , min	62.0
Fe ₂ O ₃ , max	3.0
P ₂ O ₅ , within the range of	0.3-1.0
2. Moisture content, %, within the range of	1.0-2.0
3. Grain size distribution, %:	
residue on sieve No. 5, max	5.0
residue on sieve No. 3, max	15.0
passage through sieve No. 0.5, within the range of	37.0-47.0
passage through sieve No. 009, within the range of	28.0-37.0

PERICLASE-CHROMITE REFRACTORY MORTARS TECHNICAL SPECIFICATION TU U 26.2-00191885-016:2011

	Norm for the grade		
Parameter	MPKh (МПХ)	MPKhG-10 (ΜΠΧΓ-10)	
1 Mass fraction, %:			
MgO, min	65	50	
Cr ₂ O ₃ , within the range of	13-17	12-17	
Al ₂ O ₃ , min	optional	5	
2 Grain size distribution, %:			
passage through sieve No. 05, min	-	90	
passage through sieve No. 0063, min	93	75	

Note. Subject to agreement between the manufacturer and the customer, refractory mortar may be supplied with a different grain size distribution.

REFRACTORY AGGREGATES GOST 23037-99

	Norm for the grade			
Parameter	ZShA (3IIIA)	ZMK (3MK)	ZShB (ЗШБ)	
Mass fraction, %:				
Al ₂ O ₃ , min	35	72-95	28	
Fe ₂ O ₃ , max	-	1.5	-	
Refractoriness, ⁰ C, min	1690	-	1630	
Moisture content, %, max	5	5	5	
Water absorption, %, max	6	3	8	

Note. 1 For aggregates made from rejects and scrap, water absorption shall not exceed 15%; the mass fraction of Fe₂O₃ is not regulated.

2 For aggregates of classes 5–8, water absorption is not regulated.

PERICLASE-CHROMITE AND CHROMITE-PERICLASE POWDERS FOR GUNNING OF WALLS AND SLOPES OF STEELMAKING FURNACES TECHNICAL SPECIFICATION

TU U 23.2-00191885-044:2022

Parameter	Norm for the products of grade			
	PPKhT	PPKhT-1	PKhPT	
	(ППХТ)	(ППХТ-1)	(ПХПТ)	
1 Mass fraction, %				
Cr ₂ O ₃ , within the range of	15-25	10-25	30-40	
MgO, min	55	55	-	
max	-	-	55	
SiO ₂ , max	5	5	7	
CaO, max	3	3	2.5	
2 Moisture content, %, max	1.5	2	2	
3.Grain size distribution, %		•		
residue on sieve No. 3	Not permitted			
residue on sieve No. 1, max	5	10	10	
passage through sieve No. 05, within the range of	65-85	-	70-80	
including passage through sieve No. 009, within the range of	20-30	20-40	20-30	

CHROMITE POWDER TECHNICAL SPECIFICATION TU U 23.2-00191885-050:2023

Parameter	Norm for the products of grade		
	РКh-45 (ПХ-45)	РКh-40 (ПХ-40)	
1 Mass fraction, %			
Cr ₂ O ₃ , within the range of	45	40	
2.Grain size distribution, %			
residue on sieve No. 3.2, min	Not permitted		
residue on sieve No. 2, max	5	8	
passage through sieve No. 0.5, max	90	90	

MULLITE-CORUNDUM REFRACTORY MIXES FOR LINING IN BASIC OXYGEN FURNACE AND BLAST FURNACE OPERATIONS TECHNICAL SPECIFICATION TU U 23.2-00191885-053:2024

Parameter	Norm for the mix of grade MMK-72 (MMK-72)
1. Mass fraction (on ignition basis), %:	
Al ₂ O ₃ , min	72.0
Fe ₂ O ₃ , max	1.3
P ₂ O ₅ , within the range of	2.4-3.2
2. Loss on ignition, %, within the range of	1.5-2.2
3. Moisture content, %, within the range of	6-7
4. Grain size distribution, %:	
passage through sieve No. 5, min	100
passage through sieve No. 3.2, within the range of	90-100
passage through sieve No. 2, within the range of	80-90
passage through sieve No. 05, max	70
passage through sieve No. 009, within the range of	39-46

CERAMIC MIX FOR HARDFACING TECHNICAL SPECIFICATION TU U 23.2-00191885-028:2016

Parameter	Norm for grade SNK-1 (CHK-1)
1 Mass fraction of SiO ₂ (on ignition basis), % min	
	85.0
2 Moisture content, %, max	1.0
3 Refractoriness, ⁰ C, min	1580
4 Grain size distribution, %, 0-1 mm	100

Note. The production of the mixture with other physico-chemical properties and a different grain size distribution is permitted subject to agreement between the manufacturer and the customer.

REFRACTORY AGGREGATES FOR CONCRETE PRODUCTS, MIXES, COMPOUNDS, COATINGS, AND MORTARS GOST 23037-99

Parameter	Norm for the aggregates of grade							
	ZPKh Z		ZKhP	ZKh	-30	SPSp-85	5	SPSp-90
	(ЗПХ)	((ЗХП)	(3X-	30)	(ЗПСп-85	5)	(ЗПСп-90)
1 Mass fraction, %								
Cr ₂ O ₃ , within the range of	5-20		15-35	Minin	num	-		-
				30)			
MgO, min	60	Le	ess than	-		85		90
			55					
SiO ₂ , max	5.0		7.0	8.3	5	5.0		4.0
CaO, max	-		-	2.0	0 10.0			8.0
2 Moisture content, %, max	2		3	3		1		1
3. Loss on ignition, % max	-		-	-		1		0.6
4 Grain size distribution, %,			•	Norm f	or clas	SS		
	4		5			6		7
residue on sieve No. 10, max	Not permit	ted	-		-			-
residue on sieve No. 5, max	5		Not per	mitted		-		-
residue on sieve No. 2, max	40		50)	Not 1	permitted		-
residue on sieve No. 1, max	-		-		5		N	ot permitted
passage through sieve No. 0.5,	20		40)		60		95
min								
including No. 009, min	-		15	;		30		80

PLASTICIZED REFRACTORY SILICA MORTARS TECHNICAL SPECIFICATION

TU U 23.2-00191885-046: 2022

Parameter	Norm for the products of grade MD 94 (МД 94)
1. Mass fraction %,	
SiO ₂ , min	94
Al ₂ O ₃ , within the range of	2.0-3.5
Na ₂ CO ₃ , within the range of	0.10-0.15
LST, within the range of	0.07-0.12
2.Loss on ignition, %,	
max	1.1
within the range of	
3. Moisture content, %, max	
	5
4. Grain size distribution, %	
passage through sieve No. 2, min	100
passage through sieve No. 1, min	97
passage through sieve No. 02, within the	65-85
range of	
passage through sieve No. 009, within the	45-65
range of	

Note. The production of mortar with other physico-chemical properties and a different grain size distribution is permitted subject to agreement between the manufacturer and the customer.

REFRACTORY SILICA MORTAR FOR COKE OVEN BRICKWORK TECHNICAL SPECIFICATION TU U 23.2-00191885-047: 2022

Parameter	Norm for the	Norm for the mortar of grade			
	MDK-1	MDK-2			
	(МДК -1)	(МДК -2)			
1.Mass fraction, %					
SiO ₂ , min	90	90			
AL ₂ O ₃ , within the range of	3.5-5.0	3.5-5.0			
Na ₂ CO ₃ , within the range of	0.10-0.15	0.10-0.15			
2.Loss on ignition, %:					
within the range of	0.9-1.7	-			
max	-	2.0			
3. Moisture content, %, max	5	5			
4. Refractoriness, °C, min	1610	1610			
5. Grain size distribution, %:					
passage through sieve No. 2, min	100	100			
passage through sieve No. 1, min	97	97			
passage through sieve No. 02, within the range of	65-80	65-80			
passage through sieve No. 009, within the range of	45-60	45-65			
6. Brickwork properties – joint thickness during the mortar					
spread (105–110) mm, within the range of	3-5*	3-5*			
7. Aluminium sulphate, %	0.1**	-			

Note.* – the parameter is recommended and not subject to control.

^{**}Aluminium sulphate is added in the amount of 0.1% (over 100%) by the customer and is not subject to control.

CASTING POWDERS

ZAPORIZHZHIA REFRACTORIES develops and produces slag-forming powders, heat-insulating and starting mixtures, which are used for continuous casting of steel, as well as for casting steel in casting moulds during bottom pouring for a long time.

At present, casting powders produced by ZAPORIZHZHIA REFRACTORIES are successfully used at steelmaking enterprises of Ukraine, etc.

With the use of the developed mixtures, more than 15 mln tonnes of various steel grades, including those with a carbon content of 0.03% to 0.8%, as well as alloyed with silicon, manganese, chromium, niobium, vanadium, aluminum, etc., were cast at slab and bloom CCMs.

Slag-forming mixtures are used in continuous casting of steel and bottom casting into moulds to protect the liquid steel surface from secondary oxidation, assimilation of non-metallic inclusions and improve the surface quality of cast

steel.

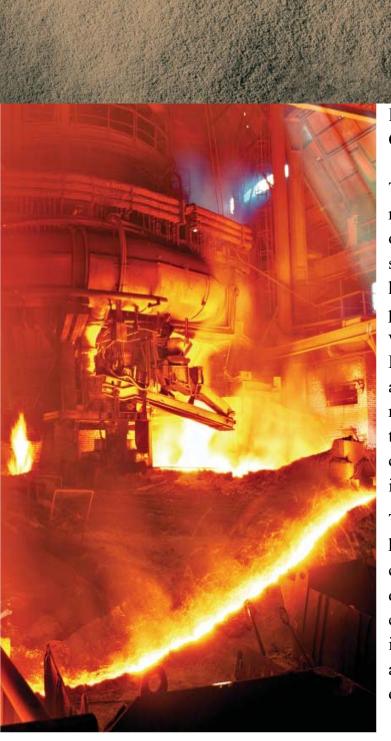
Heat-insulating mixtures are used to insulate the steel surface in tundishes and steel ladles. Having low aggressiveness towards the tundish lining, the heat-insulating mixture allows you to increase the heat sequences and, as a result, reduce the consumption of gunning mix for lining the working layer of tundish. The use of heat-insulating mixtures in steel ladles allows you to ensure the fluidity of slag and its easy removal at the end of pouring. After the end of steel casting and slag removal, the lining

of steel ladle is kept clean – without slag build-ups and steel scraps. The use of heat-insulating mixtures in bottom casting of steel into moulds allows you to reduce the shrinkage cavities in ingots.

Starting mixtures are used to fill the ladle tap hole for easy opening of the slide gate for steel tapping, with guaranteed openness without the use of oxygen at least 99%.

REFRACTORY MIXTURES FOR PROCESS NEEDS

TECHNICAL SPECIFICATION TU U 23.2-00191885-029:2024



Parameter	Norm for the products of grade						
Parameter	ZOZ MIX ht 15–20/3	ZOZ MIX rms 25-03	ZOZ MIX hm 25-02	ZOZ MIX hm 45-01	ZOZ MIX hs 30-01/2		
1.Mass fraction SiO ₂ , %,	max 60.0	max 28.0	within the range of 30.0-70.0	within the range of 30.0-50.0	within the range of 30.0-70.0		
2.Mass fraction of Al ₂ O ₃ , %, within the range of	15.0-40.0	-	-	-	10.0 – 30.0		
3.Mass fraction of CaO, %	max 10.0	-	-	-	-		
4.Mass fraction of C, %	within the range of 10.0-20.0	min 0.6	within the range of 20.0-35.0	within the range of 35.0 -45.0	max 25		
5.Mass fraction of Cr ₂ O ₃ , %, min	-	34.0	-	-	-		
6.Moisture content, % max	2.0	0.5	2.0	4.0	2.0		
7.Bulk density	-	min 1.8 g/cm ³	within the range of 150-300 kg/m ³	max 210.0 kg/m ³	max 800.0 kg/m ³		
8.Grain size distribution, %	Residue on sieve No. 5-max 5.0	Passage through screen No. 1- min 95	-	-	-		

REFRACTORY MIXTURES FOR PROCESS NEEDS TECHNICAL SPECIFICATION TU U 23.2-00191885-029:2024

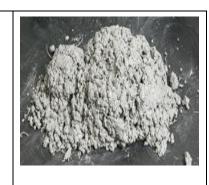
	Norm for the products of grade					
Parameter	ZOZ MIX sfc 7-12	ZOZ MIX sfm 14-06	ZOZ MIX sfc 15-20 (M)	ZOZ MIX sfc 14-17	ZOZ MIX sfc 20-28	ZOZ MIX sfc 17-20
1. Mass fraction of SiO ₂ , %, within the range of	27.0 - 34.0	26.0 -35.0	20.0 -30.0	22.0 - 30.0	20.0 - 30.0	20.0 - 30.0
2. Mass fraction of Al ₂ O ₃ , %, max			6	.0		
3. Mass fraction of CaO, %, within the range of	25.0 – 32.0	28.0 - 35.0	22.0 - 30.0	23.0 - 32.0	20.0 - 30.0	22.0 - 32.0
4. Mass fraction of Na ₂ O + K ₂ O, %, within the range of	3.0 – 6.0	-	2.0 – 6.0	-	2.0 – 6.0	-
5. Mass fraction of C , %, within the range of	7.0 – 12.0	3.0 - 6.0	15.0 – 20.0	14.0 – 17.0	20.0–28.0	17.0 – 20.0
6. Free carbon, %, within the range of	5.0 – 10.0	1.0 – 3.0	-	11.0 – 15.0	-	-
7. Mass fraction of F ₂ , %, within the range of	5.0 – 8.0	5.0 - 8.0	5.0 – 10.0	5.0 – 10.0	5.0 - 8.0	5.0 – 10.0
8. Mass fraction of S, %, max	0.8	1.0	1.0	1.0	1.0	1.0
9. Moisture content, %, max	0.5	0.5	0.5	1.0	1.0	1.0
10. Basicity, within the range of CaO/SiO ₂	0.8 – 1.2	0.8 - 1.2	0.8 - 1.0	0.8 - 1.2	0.8 - 1.2	0.8 - 1.2
11. Grain size distribution, %	Residue on sieve No. 3 - not permitted Residue on sieve No. 1 - maximum 3.0 Residue on sieve No. 063 - maximum 10.0 Passage through sieve No. 0063 - minimum 50.0					

The data presented in the tables are for informational purposes only, as they are based on average actual values obtained from laboratory testing of serial production.

PRODUCTION OF REFRACTORY CONCRETES AND MIXTURES

The shop for the production of high-tech refractory concrete mixtures was put into operation in May 2013. The new production site, designed and equipped by EIRICH, is highly productive continuous automated plant, equipped with high-precision weighing, dosing and mixing equipment.

Production facilities allow the production of a wide range of high-tech refractory concrete mixtures of various compositions for lining thermal units of enterprises of metallurgical, cement, glass, chemical, heat and power industries, etc.


The use of modern refractory concretes is a key tool for reducing the specific consumption and costs of refractories, the development of new structural high-efficiency schemes for lining thermal units, improving the conditions of their operation and repair, improving the production culture of enterprises.

DRY REFRACTORY CONCRETE MIX of grade SSB-90V (CCБ-90B)

Parameter	Norm for grade SSB-90V
1. Mass fraction, %	
Al ₂ O ₃ , min	90.0
Fe ₂ O ₃ , max	0.5
CaO, max	1.5
2. Moisture content, %, max	0.2
3. Grain size distribution, size 0-10 mm	
residue on sieve No. 10, %, max	10
4. Cold crushing strength, MPa, min	
after firing at 1000°C (T _{firing1})	50.0
after firing at 1500°C (T _{firing2})	80.0
5. Apparent density, g/cm ³ , min	
after firing at 1000°C (T _{firing1})	2.8
after firing at 1500°C (T _{firing2})	2.8

Note. 1 Type of binding: hydraulic

2. Method of application: vibration

3. Mixing water quantity, 1/100 kg, within the range of 4.5–5.5 — for monolithic lining at the customer's site.

DRY REFRACTORY CONCRETE MIX of grade SSB-80V (CCБ-80B)

Parameter	Norm for grade SSB-80V
1. Mass fraction, %	
Al ₂ O ₃ , min	90.0
Fe ₂ O ₃ , max	0.5
CaO, max	1.5
2. Moisture content, %, max	0.2
3. Grain size distribution, size 0-10 mm	
residue on sieve No. 10, %, max	10
4. Cold crushing strength, MPa, min	
after firing at 1000°C (T _{firing1})	50.0
after firing at 1500°C (T _{firing2})	80.0
5. Apparent density, g/cm ³ , min	
after firing at 1000°C (T _{firing1})	2.8
after firing at 1500°C (T _{firing2})	2.8

Note. 1 Type of binding: hydraulic

2. Method of application: vibration

3. Mixing water quantity, 1/100 kg, within the range of 4.5-5.5 — for monolithic lining at the customer's site.

Physical and chemical parameters - in accordance with the customer's contract (specification)

DRY REFRACTORY CONCRETE MIX of grade SSB-80S (CC5-80C)

Parameter	Norm for grade SSB-80S
1. Mass fraction, %	
Al ₂ O ₃ , min	90.0
Fe ₂ O ₃ , max	0.5
CaO, max	1.5
2. Moisture content, %, max	0.2
3. Grain size distribution, size 0-10 mm	
residue on sieve No. 10, %, max	10
4. Cold crushing strength, MPa, min	
after firing at 1000°C (T _{firing1})	50.0
after firing at 1500°C (T _{firing2})	80.0
5. Apparent density, g/cm ³ , min	
after firing at 1000°C (T _{firing1})	2.8
after firing at 1500°C (T _{firing2})	2.8

Note. 1 Type of binding: hydraulic

- 2. Method of application: vibration
- 3. Mixing water quantity, 1/100 kg, within the range of 4.5-5.5 for monolithic lining at the customer's site.

Physical and chemical parameters - in accordance with the customer's contract (specification)

(for lining various thermal equipment)

Parameter	ZOZ CAST FC40 MCC	ZOZ CAST HA 60 VL	ZOZ CAST HA 65 LCC	ZOZ CAST HA 75 LCC	ZOZ CAST FC 55 MCC	ZOZ CAST HA 55-01 LCC
Mass fraction						
on						
ignition, %		60		0.0		
Al ₂ O ₃ , min	45	60	65	80	62	55
Fe ₂ O ₃ , max	-	-	1.5	1.2	2.0	-
CaO, max	3.5	2	1.5	1.5	4.0	1.8
SiO ₂ , max	-	-	-	-	-	-
SiC, max	-	-	-	-	-	-
Moisture content, %,						
max	0.2	0.2	0.2	0.2	0.2	0.2
Amount of mixing						
water, 1/100kg	7.5-8.0	6.0-7.0	6.0-6.5	6.0-6.5	7.0-7.5	5.0-6.0
Cold crushing strength,						
MPa,						
min						
After drying						
at 110 ⁰ C	25		30	25	40	50
After firing	_					
at 1000° C (T _{firing2})		30	40	_	55	_
After firing						
at 1500°C (T _{firing2})			70	50	70	95
After firing						
at 1400°C	30	-	-	-	-	-
Apparent density,						
g/cm ³ , min						
After drying		-	2.45	2.65	2.4	2.4
at 110 ⁰ C	2.15					
After firing						
at 1000°C (T _{firing2})	-	_	2.5	_	2.4	-
After firing						
at 1500°C (T _{firing2})	-		2.52	2.65	2.35	2.3
After firing at 1400°C	2.1					
	2.1	-	-	-	-	-

(for linings of various thermal equipment)

Parameter	ZOZ CAST bot 16 VD	ZOZ CAST bot 17 VD	ZOZ CAST HA 85 LCC	ZOZ CAST wos 17 VD	ZOZ CAST bod 50 VD	ZOZ CAST bod 60 VD
Mass fraction						
on						
ignition, %						
Al ₂ O ₃ , min	80	72	85	90	50	66
Fe ₂ O ₃ , max	1.2	1.5	1.0	0.5	1.8	1.0
CaO, max	1.5	1.5	1.5	1.5	2.4	2.3
SiO ₂ , max	-	-	-	-	-	27
SiC, max	-	-	-	-	19	-
Moisture content, %,						
max	0.2	0.2	0.2	0.2	0.2	0.2
Amount of mixing						
water, 1/100kg	5.5-6.0	5.5-6.5	5.5-6.0	4.5-5.5	4.0-6.0	4.6-5.2
Cold crushing strength,						
MPa,						
min						
After drying		_	50	_	50	50
at 110°C	35					
After firing		35	40	50	70	70
at 1000^{0} C (T _{firing2})	50		10	30	70	70
After firing		70	80	80	50	50
at 1500°C (T _{firing2})	70					
After firing						
at 1400°C	-	-	-	-	-	-
Apparent density,						
g/cm ³ , min						
After drying						
at 110 ⁰ C	2.65	-	2.8	-	-	-
After firing						
at 1000^{0} C (T _{firing2})	2.6	2.5	2.8	2.8	2.65	2.65
After firing						
at 1500°C (T _{firing2})	2.65	2.5	2.85	2.8	-	-
After firing						
at 1400 ⁰ C	-	-	_	_	_	_

(for linings of various thermal equipment)

Parameter	ZOZ CAST wad 57 VD	ZOZ CAST wad 48 VD	ZOZ CAST wod 65 VD	ZOZ CAST wod 70 VD	ZOZ CAST wod 71 VD	ZOZ CAST bod 74 VD
Mass fraction	37 VD	40 VD	OSVD	70 V D	/1 V D	/4 VD
on						
ignition, %						
Al ₂ O ₃ , min	57	48	65	70	71	74
Fe ₂ O ₃ , max	1.5	2.0	1.0	0.5	2	0.8
CaO, max	2.7	2.9	1.0	1.0	1.0	1.0
SiO ₂ , max	38	43	6.0	4,3	5.0	16.0
SiC, max	-	-	18.0	18.6	21	6.0
Moisture content, %,						
max	0.2	-	-	-	0.2	-
Amount of mixing		4.5-5.8	4.2-5.0	3.5-4.8	3.0-4.2	4.1-5.1
water, 1/100kg	4.5-5.8					
Cold crushing strength,						
MPa,						
min						
After drying	50	52	45	40	40	80
at 110 ⁰ C						
After firing	50	40	55	40	40	-
at 1000°C (T _{firing2})						
After firing	-	-	-	-	-	100
at 1500°C (T _{firing2})						
After firing		-	-	-	-	-
at 1400 ⁰ C	-					
Apparent density,						
g/cm ³ , min						
After drying		-	-	-	-	-
at 110 ⁰ C	-					
After firing		2.65	2.93	3.0	2.85	2.86
at 1000°C (T _{firing2})	2.48					
After firing at 1500°C (T _{firing2})		-	-	-	-	-
After firing at 1400°C	-	_	_	_	_	_
Title Ining at 1700 C	_	_	_	_	_	

(for linings of various thermal equipment)

Parameter	ZOZ CAST wod 85 VD	ZOZ CAST wod 77 VD	ZOZ CAST wod 75 VD	ZOZ CAST wod 74 VD
Mass fraction				
on ignition, %				
Al ₂ O ₃ , min	85	77	75	74
Fe ₂ O ₃ , max	0.2	0.5	0.1	0.9
CaO, max	0.5	0.6	0.9	0.7
SiO ₂ , max	1,6	6	4.2	9.0
SiC, max	10	13	18	12
Moisture content, %,	-	-	_	-
Amount of mixing water, 1/100kg	3.4-4.4	4.4-5.4	3.8-4.8	3.4-4.4
Cold crushing strength,				
MPa,				
min				
After drying	40	50	65	100
at 110 ⁰ C				
After firing at 1000°C (T _{firing2})	-			
After firing at 1500°C (T _{firing2})	60	140	80	100
After firing at 1400°C	-	-	-	-
Apparent density, g/cm ³ , min				
After drying at 110°C	-	-	-	-
After firing at 1000°C (T _{firing2})	3.27	2.98	3.08	3.0
After firing at 1500°C (T _{firing2})	-	-	-	-
After firing at 1400°C		-	-	-

Note 1. The mass fraction of SiC is ensured by the manufacturing process. **Note.** The cold crushing strength and apparent density at firing temperatures of 1400°C and 1500°C are ensured by the manufacturing process

PRODUCTS UNDER TESTING AND DEVELOPMENT

HARDENING AGENT OF GRADE ZOZ MIH QH-2 FOR INSULATING INSERTS OF MOULDS

Parameter	Norm for grade ZOZ MIH QH-2		
. Mass fraction, %			
Al ₂ O ₃ , min	7.0		
SiO2, min	30		
CaO, min	35		
2. Moisture content, %, max	1.0		
3. Grain size distribution, %:			
residue on sieve No. 1, max	3		
passage through sieve No. 0.09mm, min	75		

GUNNING MIX ZOZ AL55 SIC9

Parameter	Norm for grade ZOZ AL55 SIC9
1. Mass fraction, %	
Al ₂ O ₃ , min	55
SiC, within the range of	8 - 12
2. Moisture content, %, max	0.5
3. Cold crushing strength, N/mm ² :	
- after drying at 110°C (24 hours)	minimum 10
- after firing at 1500°C (5 hours)	minimum 20
5. Apparent density, g/cm³, min	
- after drying at 110°C (24 hours)	minimum 2.15
- after firing at 1500°C (5 hours)	minimum 2.25

Physical and chemical parameters - in accordance with the customer's contract (specification)

SHOTCRETE ZOZ GUN 60-01 TD

Parameter	Norm for grade ZOZ AL55 SIC9
1. Mass fraction, %	
Al ₂ O ₃ , min	60
Fe ₂ O ₃ , max	1.0
2. Moisture content, %, max	0.5
3. Cold crushing strength, N/mm ² :	
- after drying at 110°C (24 hours)	minimum 15
- after firing at 1500°C (5 hours)	minimum 20
4. Apparent density, g/cm ³ , min	
- after drying at 110°C (24 hours)	minimum 2.10
- after firing at 1500°C (5 hours)	minimum 2.15

Physical and chemical parameters - in accordance with the customer's contract (specification)

VIBROCAST PRODUCTS

The shop includes a section for the production of refractory concrete products, where complex vibrocast products are manufactured.

VIBROCAST CONCRETE PRODUCTS FOR CONTINUOUS STEEL CASTING TUNDISHES

Parameter	Norm for products	
	Crucible	Well block
1. Mass fraction, %		
Al ₂ O ₃ , min	90.0	90.0
Fe ₂ O ₃ , max	0.5	0.5
CaO, max	1.5	1.5
2.Cold crushing strength, MPa, min: -after firing, in the cold state	50.0	40.0
3.Apparent density, g/cm³, min: -after firing, in the cold state	2.8	2.8

VIBROCAST CONCRETE PRODUCTS FOR CONTINUOUS STEEL CASTING TUNDISHES

Parameter	Norm for products	
	Impact plates	Block for the installation of thermocouples
1. Mass fraction, %		
Al ₂ O ₃ , min	90.0	90.0
Fe ₂ O ₃ , max	0.5	0.5
CaO, max	1.5	1.5
2. Cold crushing strength, MPa, min: -after firing, in the cold state	50.0	40.0
3. Apparent density, g/cm³, min: -after firing, in the cold state	2.8	2.8

VIBROCAST CONCRETE PRODUCTS FOR STEEL LADLES

Norm for products	
Well block for slide gates	Tuyere block for bottom argon purging
90.0	90.0
0.5	0.5
1.5	1.5
50.0	50.0
2.8	2.8
	Well block for slide gates 90.0 0.5 1.5 50.0

VIBROCAST CONCRETE PRODUCTS FOR STEEL LADLES

Physical and chemical parameters

Parameter	Norm for products	
	Ladle nozzle	Impact plate
1. Mass fraction, %		
Al ₂ O ₃ , min	90.0	90.0
Fe ₂ O ₃ , max	0.5	0.5
CaO, max	1.5	1.5
2. Cold crushing strength, MPa, min: -after firing, in the cold state	50.0	50.0
3. Apparent density, g/cm³, min: -after firing, in the cold state	2.8	2.8

VIBROCAST CONCRETE PRODUCTS FOR PELLET INDURATION MACHINES

Physical and chemical parameters

Parameter	Norm for products	
	Burner block	
1. Mass fraction, %		
Al ₂ O ₃ , min	58.0	
2. Cold crushing strength, MPa, min: -after firing, in the cold state	20.0	
3. Apparent density, g/cm³, min: -after firing, in the cold state	2.6	
4. Apparent porosity, %, max -after firing, in the cold state	25	

REFRACTORY SERVICE OF ZAPORIZHZHIA REFRACTORIES

One of the new and prioritised areas of activity for ZAPORIZHZHIA REFRACTORIES is the performance of refractory works. Many years of experience in the refractory business have demonstrated that while high-quality refractory products are important, they are not the sole factor in the efficient use of refractories. Our customers often cite "low-quality" refractories as the reason for not achieving the planned economic benefits. However, failure to follow the methodology for performing and preparing the lining for operation, as well as lining maintenance recommendations or intermediate repair schedules, leads to premature lining wear, which increases specific costs and reduces the efficiency of use of refractories.

Only through strict control and adherence to the supplier's technical requirements for the

preparation and operation of linings can the customer achieve the main goal – reliable production, desired properties of finished products, reduced labour costs for refractory installation works, higher lining durability, and lower specific consumption and refractory expenses.

To date, ZAPORIZHZHIA REFRACTORIES offers a wide range of services for the organisation and performance of refractory work:

- inspection of facilities;
- development of lining designs;
- selection of required materials;
- manufacture and supply of refractories and related materials;
- performance of refractory installation works, including on a turnkey basis;
- putting into operation;
- after-sales warranty service.

This allows customers to focus on managing and improving core business efficiency; reducing refractory inventories and freeing up working capital; reducing specific costs for refractories and their use; as well as lowering personnel costs related to sourcing, installation, maintenance, and repair of linings.

PACKAGING

Effective packaging is the key to ensuring the safe delivery of refractory products to customers, preserving their appearance and protecting them from moisture.

The company has done a lot in this area. Refractory products are packed in packages placed on metal or wooden pallets.

Palletised packages are covered with corrugated cardboard boxes and stretch polyethylene film. All packages are secured with polyester straps.

Special packing machines, purchased in Canada and the USA, automatically wrap the packages in selfadhesive film, protecting the products from mechanical damage and moisture.

Particularly complex refractories are packed in wooden boxes weighing up to 1 ton. Bulk materials are packed in Big Bags.

While improving packaging, we completed the mechanisation of warehouse operations and the loading of refractories onto rail and road transport.

Reliable packaging ensures that refractory products reach customers with all their physical and chemical properties fully preserved in accordance with technical regulations.

All raw materials supplied to the company are subject to incoming inspection: ore, magnesites, clays, kaolins, etc.

All raw materials delivered to the enterprise – including ore magnesite, clays, kaolins, and others – are subject to incoming inspection.

Samples are taken and sent to the Central Laboratory of the Quality Control Department to determine quality parameters such as chemical composition, moisture, grain size distribution, and others. Chemical composition is analysed by

the Quality Control Department using the chemical method and X-ray spectrometry on a Simultix 14 unit. The raw materials are qualified based on the results of laboratory tests.

Finished products are certified by the Quality Control Department for compliance with regulatory documents (GOST, DSTU, TUU, etc.) and attested according to ISO 17025, as well as other regulatory documents in force at the manufacturing facility and in Ukraine.

Based on external inspection (dimensions, completeness, packaging, etc.), as well as results of

physical and mechanical testing and chemical composition control performed by the QCD, a certificate of conformity is issued. All shipped products have quality certificates.

RESEARCH WORK

The technical divisions of ZAPORIZHZHIA REFRACTORIES are supported by the central integrated laboratory (CIL) that includes a research department (RD).


The department was established to develop new types of refractories and improve existing products, conduct product testing at customers' sites, and gather analytical data on refractory performance. The establishment of the RD has enabled the company to introduce new technologies and launch

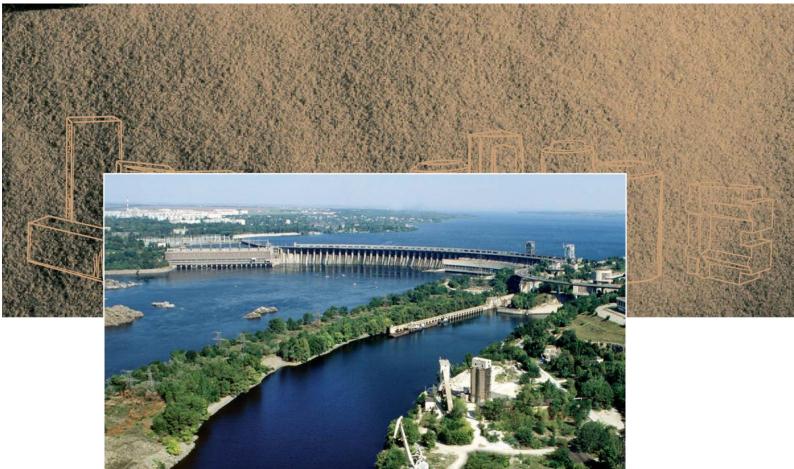
the production of modern refractories with minimal cost, such as periclase-carbon refractories for the lining of ladles, basic oxygen furnaces, and steel tapholes, periclase fired refractories for steel tapholes, and periclase-chromite direct-bonded refractories for the lining of open-hearth furnace roofs. This has resulted in extended service life of thermal equipment and reduced specific refractory consumption for customers.

The RD provides engineering services and consulting on the sustainable use of refractories. They develop technical proposals for refractory linings of thermal equipment based on customers' requests.

Even after new products have been developed and introduced into serial production, the RD continues to monitor their performance at customers' sites and adjusts their properties according to specific service conditions.

Systematic research and development activities contribute to the improvement of aluminosilicate and magnesia refractory manufacturing processes, reduction of production defects, and enhancement of process equipment.

ENVIRONMENTAL PROTECTION


ZAPORIZHZHIA REFRACTORIES pursues a consistent policy aimed at reducing emissions of harmful substances to the atmosphere and discharges into water bodies. By-products, raw materials generated during processing, and non-conforming products are recycled. The company currently operates 135 dedusting plants of various types, covering all process equipment. Between 1995 and

2005, the company invested over UAH 12 million in the reconstruction, replacement, and construction of modern electrostatic precipitators. In parallel, funds are allocated to improve production equipment and implement additional measures, which also contribute to reducing harmful emissions. Each year, the company spends UAH 1-2 million from its production development fund for these purposes.

In 1998, to eliminate discharges into the Dnieper River and to switch shops to full water recirculation, the company introduced new wastewater treatment facilities that integrate industrial and stormwater effluents into one recirculation system, reusing the treated water for production.

The construction of the wastewater treatment facilities brought the concentration of harmful substances in discharges in line with the regulatory values and decreased the discharge volume tenfold.

Work is currently underway to further modernise and improve dedusting equipment.

